Boosting Variational Inference: an Optimization Perspective
نویسندگان
چکیده
Variational inference is a popular technique to approximate a possibly intractable Bayesian posterior with a more tractable one. Recently, boosting variational inference [20, 4] has been proposed as a new paradigm to approximate the posterior by a mixture of densities by greedily adding components to the mixture. However, as is the case with many other variational inference algorithms, its theoretical properties have not been studied. In the present work, we study the convergence properties of this approach from a modern optimization viewpoint by establishing connections to the classic Frank-Wolfe algorithm. Our analyses yields novel theoretical insights regarding the sufficient conditions for convergence, explicit rates, and algorithmic simplifications. Since a lot of focus in previous works for variational inference has been on tractability, our work is especially important as a much needed attempt to bridge the gap between probabilistic models and their corresponding theoretical properties.
منابع مشابه
Variational Boosting: Iteratively Refining Posterior Approximations
We propose a black-box variational inference method to approximate intractable distributions with an increasingly rich approximating class. Our method, variational boosting, iteratively refines an existing variational approximation by solving a sequence of optimization problems, allowing a trade-off between computation time and accuracy. We expand the variational approximating class by incorpor...
متن کاملBoosting Variational Inference
Modern Bayesian inference typically requires some form of posterior approximation, and mean-field variational inference (MFVI) is an increasingly popular choice due to its speed. But MFVI can be inaccurate in various aspects, including an inability to capture multimodality in the posterior and underestimation of the posterior covariance. These issues arise since MFVI considers approximations to...
متن کاملA Filtering Approach to Stochastic Variational Inference
Stochastic variational inference (SVI) uses stochastic optimization to scale up Bayesian computation to massive data. We present an alternative perspective on SVI as approximate parallel coordinate ascent. SVI trades-off bias and variance to step close to the unknown true coordinate optimum given by batch variational Bayes (VB). We define a model to automate this process. The model infers the l...
متن کاملOperator Variational Inference
Variational inference is an umbrella term for algorithms which cast Bayesian inference as optimization. Classically, variational inference uses the Kullback-Leibler divergence to define the optimization. Though this divergence has been widely used, the resultant posterior approximation can suffer from undesirable statistical properties. To address this, we reexamine variational inference from i...
متن کاملA New Perspective on Boosting in Linear Regression via Subgradient Optimization and Relatives
Boosting [6,9,12,15,16] is an extremely successful and popular supervised learning technique that combines multiple “weak” learners into a more powerful “committee.” AdaBoost [7, 12, 16], developed in the context of classification, is one of the earliest and most influential boosting algorithms. In our paper [5], we analyze boosting algorithms in linear regression [3,8,9] from the perspective o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.01733 شماره
صفحات -
تاریخ انتشار 2017